Optimizing saturation-recovery measurements of the longitudinal relaxation rate under time constraints.

نویسندگان

  • Jung-Jiin Hsu
  • Gary H Glover
  • Greg Zaharchuk
چکیده

The saturation-recovery method using two and three recovery times is studied for conditions in which the sum of recovery times is 1.5T(1) to 3T(1), where T(1) is the longitudinal relaxation time. These conditions can reduce scan time considerably for long T(1) species and make longitudinal relaxation rate R(1) (R(1) = 1/T(1)) mapping for body fluids clinically feasible. Monte Carlo computer simulation is carried out to determine the ideal set of recovery times under various constraints of the sum of recovery times. The ideal set is found to be approximately invariant to the signal-to-noise ratio. For the three-point method, two of the recovery times should be set the same or approximately the same and should be shorter than the third one. Only marginal improvements in accuracy and precision can be achieved by the three-point method over the two-point method under a common constraint of the sum of recovery times. Three-dimensional, high resolution, whole-brain saturation-recovery scans on volunteers with a fast-spin-echo technique (XETA) and completed in a scan time of 10 min generated R(1) measurements of cerebrospinal fluid (T(1) approximately 4 s) in agreement with the computer simulation and literature results, which demonstrates the clinical feasibility of applying the two-point saturation-recovery method for R(1) mapping for long relaxation components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relevance between MRI longitudinal relaxation rate and gadolinium concentration in Gd3+/GO/alginate nanocomposite

Objective(s): Relevance between magnetic resonance imaging (MRI) relaxation rate and concentration of magnetic nanoparticles determines the capability of a nanomaterial to provide MRI contrast. In the present study, alginate was conjugated to gadolinium/graphene oxide nanocomposite to form gadolinium/graphene oxide/alginate nanocomposite, aiming to investigate its effect on the relevance betwee...

متن کامل

Tissue- and column-specific measurements from multi-parameter mapping of the human cervical spinal cord at 3 T

The aim of this study was to quantify a range of MR parameters [apparent proton density, longitudinal relaxation time T1, magnetisation transfer (MT) ratio, MT saturation (which represents the additional percentage MT saturation of the longitudinal magnetisation caused by a single MT pulse) and apparent transverse relaxation rate R2*] in the white matter columns and grey matter of the healthy c...

متن کامل

Spin-diffusion NMR at low field for the study of multiphase solids.

The use of spin-diffusion NMR for the measurement of domain sizes in multiphase materials is becoming increasingly popular, in particular for the study of heterogeneous polymers. Under conditions where T(1) relaxation can be neglected, which is mostly the case at high field, analytical and approximate solutions to the evolution of spin diffusion are available. In order to extend the technique t...

متن کامل

Long-Range Distance Measurements in Proteins at Physiological Temperatures Using Saturation Recovery EPR Spectroscopy

Site-directed spin labeling in combination with EPR is a powerful method for providing distances on the nm scale in biological systems. The most popular strategy, double electron-electron resonance (DEER), is carried out at cryogenic temperatures (50-80 K) to increase the short spin-spin relaxation time (T2) upon which the technique relies. A challenge is to measure long-range distances (20-60 ...

متن کامل

A Model-Based Compressed Sensing Method for Fast Cardiac T1 Mapping in Small Animals

Introduction Direct measurement of the longitudinal relaxation time T1 provides objective and quantitative diagnostic information. However, current T1 mapping methods are generally time consuming without the aid of fast imaging. The current study developed a model-based compressed sensing (CS) method for fast cardiac T1 mapping in small animals. Based on the physics of magnetization recovery, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 62 5  شماره 

صفحات  -

تاریخ انتشار 2009